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Abstract-A general numerical procedure for determining the stress singularity at the vertex of a
two material wedge is presented. Using an eigenfunction expansion technique and assuming the
asymptotic displacement field or stress potential to be of the form r<F(II), a finite element approach
is constructed. The dominant order of stress singularity is determined by solving the eigenvalue
equation obtained from the finite element model. Numerical results for some specific problems are
given. These results include the order of stress singularities at the free edge of an interface between
adjacent layers in a laminated composite, as well as the case of an interface crack in a composite
laminate. Results are also obtained by a spectral overlay on a finite element mesh through a least
square procedure and show that if high resolution is used near the free edge, a good estimate of
singularity can be obtained.

I. INTRODUCTION

Interface cracks have been an intense subject of research during the past 30 years. A variety
of analytical tools has been developed for determining the strength of stress singularities at
the crack tip. For the problem of an interface crack between dissimilar isotropic materials,
several elastic solutions have been given. Williams (1959), and later Rice and Sih (1965)
investigated the singular field ahead of the crack and found that the stresses exhibit an
oscillatory solution. Erdogan (1965), England (1965), Dundurs (1969) and Comninou
(1977) gave solutions of some specific interface crack problems.

Interface cracks between two anisotropic materials have also been studied. Goton
(1967), Clements (1971), Willis (1971), and Wang and Choi (1983) presented elastic solu­
tions which exhibit an oscillatory stress singularity at the interface crack tip between
anisotropic materials.

Renewed interest in this field occurred due to interest in the mechanical behavior at
free edges of laminated composites, a problem unique to composite laminates and not
observed in homogeneous solids in general. Because of its complexities, an analytical
method to obtain a complete solution seems impossible. However, several approximate
numerical solutions for the problem of finite-width laminates subjected to uniform axial
strain are available. These results show good agreement for the points away from the free
edge. For the points near the free edge, the stresses obtained by various investigators
disagree with each other.

The first approximate solution of interlaminar stresses was proposed by Pipes and
Pagano (1970), who used an elastic, quasi-three-dimensional solution by finite difference
techniques to evaluate interlaminar stresses. The results showed that the stress states exhibit
high gradients and perhaps singularities along the free edges of the laminates. A large
variety of numerical methods has been proposed to calculate interlaminar stress. The
representative methods include: the finite difference method by Pipes and Pagano (1970),
boundary-layer theory by Tang and Levy (1975), perturbation methods by Hsu and Herako­
vich (1977), series solutions by Wang and Dickson (1978) and finite element methods by
Wang and Crossman (1977), Herakovich et al. (1979), Spilker and Chou (1980), Raju and
Crews (1981), Hsiao (1991) and Gu and Reddy (1992). Excellent reviews on this field are
available (Whitecomb et al., 1982; Ye, 1990; Gu and Reddy, 1992).

Pipes and Pagano (1970) suggested from their finite difference results that there might
be a singularity in the distributions of interlaminar stresses at the corner of the free edge
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interface. The finite element results by Wang and Crossman (1977) and later by Raju and
Crews (1981) appeared to confirm the existence of a stress singularity at the intersection of
the interface and free edge, and the singularity of the interlaminar stresses then became the
focus of attention. Wang and Choi (1982) and Zwiers et al. (1982), separately, obtained
the strengths of the singularity through the complex-variable method.

Although analytical methods have been used to examine the stress singularity in the
two material wedge, very few numerical methods with more complete results have been
developed. Some numerical methods have been developed for other singular problems.
Using an eigenfunction expansion technique for the displacement field, Bazant and
Estenssord (1979) and Somaratna and Ting (1986) developed a finite element method to
determine the three-dimensional crack singularities. Barsoum (1988, 1990) used an iterative
finite element method for the eigenvalue problem of a crack between dissimilar isotropic
media to determine the strength of the stress singularity. However, no numerical solutions
are available for the singularities in the Pipes and Pagano problem or for the interface crack
between two anisotropic materials.

In the present study, we first investigate the use of a spectral overlay finite element
method which was developed by Belytschko et al. (1990) and Belytschko and Lu (1992)
for solving the edge-stress problem. Following the discussion of the stress singularity in the
composite laminates, a numerical approach for determining the stress singularities in a two
material wedge is developed and applied to the study of free-edge and interface crack
problems. Two methods for deriving the finite element formulation are used:

(1) a method based on a stress function;
(2) a method based on the interpolation of displacements.

In the methods, quadratic and quartic eigenvalue problems are obtained, respectively.
The basic idea of our method is to assume that the strength of the stress singularity is

dependent on the near field homogeneous solution, which admits a separable form. Fol­
lowing the derivation of the finite element formulation for the problems, some numerical
results for special geometry in isotropic and anisotropic materials are presented and com­
pared to analytical solutions.

It is observed that the method using quadratic (method 1) and linear (method 2)
elements here is quite efficient in providing rapidly converging and accurate results. Several
new examples are also given and discussed. These results deal with three areas for both
isotropic and anisotropic materials: the interface crack, the wedge problem and the free
edge effect.

2. THE SPECTRAL OVERLAY FINITE ELEMENT ANALYSIS OF STRESSES IN
COMPOSITE LAMINATES

Laminate model
The problem considered is the uniaxial loading of a symmetric composite laminate. A

typical laminate and the co-ordinate system are shown in Fig. 1. Each layer of the composite
lies in a plane parallel to the (x, y) plane and is a fiber-reinforced composite material in
which the fiber direction makes an angle a with x-coordinate. The laminate is assumed to

Domain modeled
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EE::p

Cross section

Fig. 1. Laminate geometry and loading.
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be sufficiently long so that the end effect is neglected in the region far from the ends.
Consequently, the stress state in the composite laminate is independent of the x-variable.
Small deformation and an initially stress-free field with negligible body force are also
assumed. With these assumptions, a pseudo three-dimensional displacement field can be
written in the form (Pipes and Pagano, 1970) :

u = kx+ U(y,z),

v = V(y,z),

w = W(y,z),

(1)

(2)

(3)

where u, v and ware the displacements in X-, y- and z-directions, respectively, and k is the
applied uniform axial strain.

The strain vector II has the form:

(4)

Furthermore, the displacement field of eqns (1)-(3) should satisfy the equations of
equilibrium and the traction-free conditions on the edges, y = ±b and top and bottom
surfaces z = ± 2h.

Spectral overlay finite element analysis
To study the free-edge effects in Pipes and Pagano's problem, two cross-ply laminates

have been studied to demonstrate influence of free-edge effects. Each layer of the composite
is assumed to be made of the same orthotropic material. The orientation of the axes differs
from layer to layer. Referring to the principle direction of the material (Xl> X2, X3), the
following engineering constants for the layers are used.

Typical high modulus graphite/epoxy:

V12 = Vl3 = V23 = 0.21.

The interlaminar stress results presented here were obtained by using a spectral overlay
finite element method. The material region under study in this work is reduced by symmetry
conditions to that of one quadrant of the laminate cross-sectional region in the y-z plane
as shown in Fig. I (shaded area). To represent the angle variation around the interface
corner, a polar finite element mesh has been used near the free edge and rectangular mesh
elsewhere (Fig. 2) ; a total of 168 finite elements have been used. Furthermore, two spectral
overlays were put along the interface (Fig. 3) where high stress gradients occur. A detailed
description of the spectral overlay finite element method can be found in Belytschko and
Lu (1992).

The first example is the [0/90] laminate. Figures 4-9 show the stress distributions in
the whole cross section. In this particular case, both (Jzx and (Jxy' as anticipated, vanish (Figs
9 and 7). This is because the applied strain coincides with the principle directions in both
layers. (Jx is discontinuous across the interface, but it remains constant in each layer (Fig.
4). It is clearly seen Figs 5, 6 and 8 that the maxima of (Jy, (Jz and (Jyz are obtained at the
corner of the interface and free edge. These maxima increase slightly with progressively
more terms in the spectral approximation.

The distribution of (Jy along the free edge [Fig. 5(b)] suggests that a singularity exists
at the interface corner. From Figs 5(b) and 8(b) we can also see that the (Jy and (Jyz do not
satisfy the prescribed traction-free boundary condition at the same point, since the traction­
free condition is a natural boundary condition. This and its high gradients are evidences of
a stress singularity.
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Fig. 2. Finite element mesh for composite laminates.
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Fig. 3. Two spectral domains at interface.
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Fig. 4. The (Jx distributions for [0/90) laminate.

The second case is a [45/ -45] angle-ply laminate. Some selected plots of the inter­
laminar stress distributions are given in Figs 10-12. As in the [0/90] laminate, a steep
gradient occurs near the corner of the interface and the free edge, which indicates singular
behavior at that point. The distribution of (J.<y is very complicated in this case (Fig. 11). It
is discontinuous from layer to layer and the maximum is reached in both the lower and the
upper layer near the corner of the interface and the free edge, but they have the opposite
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Fig. S. (a) The l1y distributions for [0/90J laminate; (b) l1y along the free edge; [0/90J laminate.

signs. Along the free edge, 0"xy in the numerical solution shows significant errors in satisfying
the traction-free condition near the interface.

The strength ofthe stress singularity in a composite laminate
For both laminates discussed above, the stress distribution indicates that a singularity

exists at the corner of the interface and the free edge. For the present case, if one stress is
singular at a point, then all the stresses are singular as well and singularities of all stresses
should have the same strength. This is because aU of these stresses are derivable from the
equal-order derivatives of the same stress function, as shown by Lekhnitskii (1963).

To identify the stress singularities, the O"Xy stress was used in the least square fitting
procedure by Raju and Crews (1981). Around the corner of the interface and the free edge,
they assumed:

(5)

in above, ~, p and y can be determined by a least square technique. Raju and Crews
demonstrated the stress singularity in the laminate composites and gave the singular order
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Fig. 6. (a) The {Jz distributions for [0/90] laminate; (b) (Jz along the free edge; [0/90) laminate.
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Fig. 7. The uxy distributions for [0/90] laminate.
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Fig. 8. (a) The u yZ distributions for [0/90] laminate; (b) u yz along the free edge; [0/90] laminate.
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Fig. 9. The U zx distributions for [0/90] laminate.
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Fig. 10. (a) The {1z distributions for [45/-45] laminate; (b) {1z along the free edge; [45/-45]
laminate.

from their finite element results for the first time, although the accuracy of their results may
be questioned.

To obtain the strength of the stress singularity, we noticed that the singular stress
behavior is localized in a very small zone, so each spectral domain was chosen to be quite
small (0.1 h by 0.005 h ; Fig. 3) and uses 30 terms in the direction normal to the free surface,
and two terms in the other direction. Around the singular point, the stress distribution
along the radial line from the singular point is assumed to take the form :

G' = Ar'"+Br+C. (6)

In the (±45] and [0/90] laminates, the values of the coefficients of eqn (6) obtained by
least square method are given in Tables 1 and 2.

As expected, Table 1 shows that the singular order of G'xy is almost the same as that of
G'zz. For the different laminates, the strengths of the stress singularity are in general different.
Comparison with more exact results presented later in Table 6 and Fig. 22 show good
agreement.
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Fig. 11. (a) The O'xydistributions for [45/ -45] laminate ; O'xy along the free edge; [45/-45] laminate.

3. A FINITE ELEMENT APPROACH FOR DETERMINING THE STRENGTH OF THE
STRESS SINGULARITY OF A WEDGE PROBLEM IN DISSIMILAR ISOTROPIC

MATERIALS

Based on the Lekhnitskii's stress potentials and the theory of anisotropic elasticity,
Wang and Choi (1982) determined the order of singularity of interlaminar stresses by
solving the transcendental characteristic equation obtained from the homogeneous solutions
for the problem. In the following sections of this paper, our attention will focus on con­
structing a new finite element scheme to determine the stress singularity in a two-material
wedge. We first consider a two-isotropic-material wedge problem and then extend our
method to a two-anisotropic-material wedge problem.

Formulation of the problem
Consider the geometry illustrated in Fig. 13. Two dissimilar half planes with Young's

moduli £1 and £2 and Poisson's ratio VI and V2 are joined together alongy = 0 with a crack
along y = 0, for x ~ O. The boundary conditions are:

at () = ±n, (7)

and the displacements Ur and Uo and stresses (To and 'rO are continuous across the interface
alongy = 0 for x ~ o.
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Fig. 12. (a) The (Jzx distributions for [45/-45] laminate; (b) (J" along the free edge; [45/ -45]
laminate. .

The above homogeneous boundary conditions and interface continuity conditions can
provide important information for determining the order of the stress singularity, which is
the major concern in this paper. In the rest of this section, we will demonstrate how to
employ an eigenfunction expansion technique to determine the order ofthe stress singularity
by using a finite element method.

Method 1: afinite element method based on a stressfunction
Basic formulation. Following the eigenfunction expansion procedure used by Williams

(1957), Zak and Williams (1963), Barsoum (1988) and Swenson et al. (1990), the homo­
geneous solution of the above problem can be reduced to finding an Airy stress function
x(r, 0), such that:

Table 1. The coefficients of eqn (6) in [±45jlaminate

-0.0272
-0.0277

A

2.47133
-0.75125

B

0.29563
-0.13023

c

-1.36064
-0.09301
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Table 2. The coefficients of eqn (6) in [0/90] laminate

875

-0.0308
-0.0306

A

-0.28177
0.38399

B

-0.03649
0.07680

c

-0.52411
-0.17463

il 2x(r, (J) = 0 in n, (8a)

X,rr = 0 (J = ±n, (8b)

1 1
(J = ±n. (8c)- ~XrO+ 2XO = 0r' r '

We assume that the homogeneous solution for the Airy stress function can be expanded
in terms of its eigenfunctions and each eigenfunction takes the separable form :

(9)

where Ais an eigenvalue which in general is complex. For the crack problem shown in Fig.
13, separable stress functions of the same form are determined in each region, but it is
required that the eigenvalues are equal: Al = A2' This is done to assure continuity of
displacement along the interface; subscripts 1 and 2 refer to the two materials.

Variational principle. To develop the finite element scheme for the determination of
the stress singularity, we consider the homogeneous solution in a small neighborhood of
the singular point; the polar coordinate (r, (J) is centered at the singular point as shown in
Fig. 13. The potential energy can be written as:

(10)

The W EXT can be omitted in the above because we are concerned only with the
homogeneous solution. According to the principle of minimum potential energy, the static
equilibrium state is determined by the variational equation:

(11)

or:

~ --- - - - - - - - - - ,
I Material IT Y
I

I

I crack 9.....---......::::;...J--=-----.x

Material I

Fig. 13. The interface crack problem.
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where

PI = ~i OX.ir+ r\X.99- ViX.rr). (13)

P2= ~i [rx.rr-Vi (X,r+ ~X'98)J (14)

2(l+v;) C 1 ] (15)P3= E
i

;:X.r8- r2X,8 ,

2(1 +vi) [I I ] (16)P4 = E
i

r3X.8- r 2X,r8 ,

Ps = ~ (!X,r+ ~X'88-ViX,rr). (17)
r i r r

If we substitute eqn (9) directly into (12), the governing differential equation in the r
direction cannot be satisfied, because the homogeneous boundary condition in the r direction
has not been introduced and all terms depending on r will be canceled. Therefore, to
determine the eigenvalue A" it is necessary to integrate eqn (12) by parts with respect to r:

<5n = i ([P2,rr-P 1,rJ<5x+ [P4 - P3,rJ<5X,8+ P s<5X,88) dr dO

+Boundary terms in r direction = O. (18)

To determine the eigenfunctions, we omit all boundary terms. Substituting eqns (13)­
(17) into eqn (18), we get:

(19)

or:

where

QI = ~ {(A,4 +4A.3 +4A.2)F(0) - [ViA. 2 + (1 + vi»),JF"(O)} ,
Ei

2
Q2 = - E. (1 +Vi)(A.2+2A.+ 1)£1(8),

Q3 = ~ ([-ViA,2+(1-3vi)A,+2(I-vi)]F(0)+F"(0)}.
Ei

In eqn (20), to ensure boundedness of the strain energy it is necessary that:

ReA. ';:;: -1.

where Re A. represents the real part of A..

(20)

(21)

(22)

(23)

(24)

Finite element formulation. Since the weak form (20) involves derivatives of second
order in the unknown function F(O), a C I Hermitian interpolant must be used. The n
unknowns of the problem are the nodal values Fi and their derivatives F;.
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In the ith element, we assume:

F«()) = L (Ma«())Fa+Ma«())F~),
a= I

877

(25)

where Ma«()) are Hermite interpolants, so Ma«()b) = Oab' M~«()b) = 0 and Ma«(Jb) = 0,
M~«()b) = 0ab'

The above finite element interpolation leads to the following quartic eigenvalue equa­
tion:

(26)

where

4
B~b = £. N~Nb , (28)

I

I
C~b = E(4N~Nb-vjN~Nr-2(I+vj)N~'Nb'-vjN~'N'f,), (29)

I

I
D~b = -[-(I +vj)N~Nr-4(1 +vj)N~'Nb'+(l-3vj)N~HNb]' (30)

E j

I
E~b = £.[-2N~Nb'+(3-2vj)N~HNb], (31)

I

and

(32)

This eigenvalue equation can be solved by converting it into the standard eigenvalue
problem of size 4n by 4n (see Appendix).

Method 2: Afinite element method based on displacement
Here we will give an alternative method based on the assumed separable form of the

displacement field. Consider the same problem as shown in Fig. 13, the displacements in r
and () directions are denoted by u(r, ()) and v(r, ()), respectively. The strain energy of the
body is given by eqn (10). The unknowns here are the displacements u and v.

We express the homogeneous solution of the displacements in the vicinity of the
singular point in the separable form :

u(r, ()) = r H 1F«()) ,

v(r,()) = rH1G«()).

(33)

(34)

Substituting eqns (33)-(34) into (10), integrating it by parts with respect to rand
omitting all boundary terms, gives:

or:

orr = ir 2H
1 dro<l> = 0, (35)
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Material I

crack .

Fig. 14. A crack at a bimaterial interface.

E-
D I = 1-'v2[( -A.2-1)F(0) +(1- vj-v),)G'(O)],

,

D 2 = 2(1~V;) [F'(O)+A.G(O)],

E-
El = - 2(1 ~v;) [(2 +A.)F'(O) + (A. 2+2A.)G(0)],

E-
E 2 = 1_'v2[(v;A.+l+v;)F(0)+G'(0)].,

(36)

(37)

(38)

(39)

(40)

Using linear interpolants, eqn (36) leads to the following quadratic eigenvalue problem:

(41)

Employing a technique similar to that used for the quartic eigenvalue problem, we can
convert eqn (41) to a standard eigenvalue problem of size 2n by 2n.

Applications. The strength ({3) of the crack-tip stress singularity (i.e. the radial depen­
dence of each stress component (Jjj = rPj;j(O» is directly related to the eigenvalue through
{3 = A..

Several cases were used to check the accuracy and correctness of the numerical method.
These checks are performed by considering the interface crack problem shown in Fig. 14.
When E 1 = E2, and VI = V2, the lowest eigenvalue is real and of order -0.4987 (method
1, 10 elements) or -0.4985 (method 2, 80 elements). This is in agreement with the well
known results for the crack problem in the homogeneous material. When E I '" E2, and
VI '" V2, Williams (1959), Rice and Sih (1965), England (1965) and others, using various
analytical methods, arrived at the following expression for the singular order of the asymp-

Table 3. Order of stress singularity at the interfacial crack (plane stress condition)

2.0
3.0
5.0

10.0
20.0
50.0

100.0

A(method 2)

-0.498480+iO.037329
-0.498478 + iO.056319
-0.498473+iO.075712
-0.498468 + iO.093829
-0.498465+iO.l04444
-0.498462+iO.111433
-0.498461 +iO.l13879

A (exact)

-0.5000+ iO.037306
-0.5OOO+iO.056283
-0.5000 + iO.075666
-0.5000 + iO.093774
-0.5OOO+iO.l04386
-0.5OOO+iO.111372
-0.5000+iO.I13817
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Fig. 15. The vertex of a bimaterial wedge.

totic field at the biwmaterial interface:

(42)

where

(43)

Subscripts I and 2 refer to the materials and k = 3- 4v for plane strain and
k = (3-v)/(1 +v) for plane stress, G = shear modulus. The imaginary term e leads to
oscillations of the stresses as r approaches zero. The numerical results (method 2, 80
elements) summarized in Table 3 are in excellent agreement with the above analytical
results.

Now considering the singular behavior at the vertex of a biwmaterial wedge (Fig. IS),
we first let E] = E2, and v] = V2 = 0.3. When we open the wedge angle from a crack
configuration (IX = 0°) to a half plane (IX = 90°), the eigenvalue changes from - 0.4985 to
o(Fig. 16). For EdE2 = ~, and VI = V2 0.3, we list the eigenvalues in Table 4 for various
values of IX.

E= 1000. v=O.3
0.0.,_-------------------._--,

-0.1

• Eigenvalues for plane stress

(method 1. 10 elements)
-0.2

-0.3

-0.4

10080604020
-0.5 ,.::;;;...._._---..-..........--,...--_--r-.....-...-.....- ......--t

o
9

Fig. 16. Strength of stress singularity in homogeneous media.
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Table 4. Eigenvalues of a two material wedge (plane stress condition; V, = V, = 0.3, (E,/E,) = 8)

IX (degrees) 8 = 10

A. (method 2,80 elements)

8 = 50 8 = 100

o
9

18
27
36
45
54
63
72
81
90
99

108
117
119

-0.49847 + iO.093829
-0.47173 + iO.097305
-0.44067 + iO.097601
- 0.40429 + iO.092717
-0.36139+ iO.078461
- 0.31 053 + iO.038338

-0.33072
-0.31687
-0.28964
-0.25197
-0.20350
-0.14238
-0.06501

o
o

-0.49846+iO.11143
-0.47133 + iO.11519
- 0.44026 + iO.11742
- 0.40310 + iO.11391
- 0.35855 + iO.1O 107
-0.30438 + iO.064857

-0.32296
-0.32185
-0.30369
-0.27424
-0.23332
-0.17880
-0.112647
-0.009402

o

-0.49846+ iO. I 1388
- 0.47162 + iO.11848
-0.43908 + iO. 12014
- 0.40292 + iO.11682
-0.35812+iO.10412
- 0.30343 + iO.068044

-0.32186
-0.32253
-0.30558
-0.27722
-0.23734
-0.18370
-0.11212
-0.01553

o

In the case of E I = 1, E 2 = 100, and VI = V2 = 0.3, the numerical eigenvalues for
various values of IX are shown in Fig. 17 (plane stress condition). These results indicate
three distinct regions.

In the first region, the eigenvalues are complex, which gives a singular and oscillatory
behavior to the stresses. In this region, the absolute value of the real parts of the eigenvalue
decreases from 0.4985 (IX = 0°) to 0.274 (IX = 49°), while the imaginary part of the eigenvalue
increases slightly as IX varies from 0° to 22° and decreases to 0 at IX = 49°. In the second
region, the stresses remain singular but there are no oscillations. The interesting point is
that the strength of the singularity increases a little from 0.274 to 0.315 as IX varies from
49° to 52° and then decreases to 0 (IX = 119°). Finally, there is a region with no singular
stress (IX > 119°).

The last example is the free edge problem at the bimaterial interface (Fig. 18). When

ElIE2= 100 vI =v2=O.3 (plane stress)
0.2-r--------------------,

- Re part of A.
----..--_. 1m part of A.-0.2

-0.4

_.-•..•...-....•
"'--•~0.0 .-.••-.-.-.-•••••-.••••---.._-

12010080604020
-0.6 +-......--.-......--.-......--.-........--r-........--r-........---f

o

a
Fig. 17. Eigenvalues at the tip of interface crack (method 2,80 elements); IX given in degrees.

Material I

A
Fig. 18. The free-edge problem for a bimaterial interface.
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Table 5. Eigenvalues at bimaterial free edge (method 1, 10 elements)

EdE2 2 5 10 20 50 100 200 5000

A.t -0.09185 -0.17059 -0.20350 -0.22173 -0.23334 -0.23734 -0.23936 -0.24132
AiJ -0.10653 -0.201H -0.24148 -0.26406 -0.27851 -0.28549 -0.28602 -0.28853

t plane stress
t plain strain.

the two materials are different, a stress singularity occurs at point A. In the case of a nearly
rigid bottom plate (E2/E I = 5000, VI = V2 = 0.3), Ahas the value of -0.2885, which agrees
with the -0.289 obtained by Williams (1952) and Hein and Erdogan (1971) who assumed
E 2/E I = infinite, and VI = V2 = 0.3. The numerical results (method, 1, 10 elements) are
illustrated in Table 5 and Fig. 19.

4. A FINITE ELEMENT METHOD FOR ANISOTROPIC MATERIALS

Basic formulation
We consider Pipes and Pagano's problem (Section 2, Fig. 1). In the present study, we

wish to investigate the stress singularities in the region near the junction of the free edge
and the interface. We consider the asymptotic displacement field in a small neighborhood
of the singular point at the origin, and assume that the complementary displacement field
of the asymptotic solution near the singular point can be expressed as:

Ux = uAr,B),

Ur = ur(r, B),

Uo = uo(r, 8).

(44)

(45)

(46)

To expedite further developments, we transform the displacement components from
polar coordinates to Cartesian coordinates. Thus, we have:

Ux = Ux ; uy = urcos8-uosinB; Uz = ursinB+uocosB. (47)

It should be noted that the stress components associated with the homogeneous

Q"

.Q1
- Planesuess
- Plane strain

~~-----
.Q3;-----------r-----.----~1 1m zm

EIIE2

Fig. 19. Strength of stress singularity at A (method 1, 10 elements).
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displacement field are independent of the axial coordinate x, and for the homogeneous
solution of the asymptotic field, the boundary conditions are homogeneous.

Weak formulation
Let II denote the strain energy in the body, which is given by:

(48)

Where (ex = 0) :

(49)

(50)

and

C22 C23 0 0 C26

C32 C33 0 0 C36

c= 0 0 C44 C45 0

0 0 C54 C55 0

C62 C63 0 0 C66

(51)

The displacement field corresponding to the equilibrium configuration is determined
by:

or:

bll = In tlbSTr dr dO = 0,

bll = In bUT {SOtl +rS I ~~} dr 80 = 0,

(52)

(53)

where tI is given by eqn (50) and,

bUT = {bur bur,o buo buo,o bux bux,o}

S2_ C2 C2 _S 2 -4sc 0 0

-sc SC C2 _S2 0 0

2sc -2sc _2(C2 _S2) 0 0
So = S2 c2 -2sc 0 0

0 0 0 -s -c

0 0 0 C -s

(54)

(55)



Numerical study of stress singularities

c~ s~ 2sc 0 0

0 0 0 0 0

-sc sc C2_S2 0 0
s.= 0 0 0 0 0

,

0 0 0 s c

0 0 0 0 0

in the above, s = sin 9 and c = cos 9.
Assume that the displacement field [eqns (44)-(46)] takes the separable form:

u = r A+ IF (9) . u = r1+ IF (e)· u = r A+' F (e)x 3, r ., IJ ~.

883

(56)

(57)

Equations (57) are required to satisfy the homogeneous boundary conditions and
interface continuity conditions. This leads to an eigenvalue problem for determining the
values of A.. It is noted that the value of A. is required to satisfy the condition:

ReA. ~ -I,

to ensure the displacement is finite at the origin point.
Substituting (57) into (49), gives:

where:

Eo = Sf,

I -sc 0 S2 0 0

I sc 0 c~ 0 0

E.= 0 C2_S~ 0 -2c 0 0

0 0 0 0 s c

0 0 0 0 c -s

The stresses are given by:

(I = rA(A.To+TI)d,

where

To = CEo; T l = CE •.

Substituting (63) into (53), and noticing bUT = rA+ IJdT, we get:

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

Finite element formulation
The weak form (65) may now be used as a basis for formulating a finite element

approximation. To this end let - (n/2) = eo < 0. < ... < 0n+' = (n/2) be a partition of the
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interval (- (n/2), (n/2» into subintervals ill = (lib 0;2) of the length he. The unknown
functions F;(O) are approximated by shape functions N[ and nodal values Fi!

(66)

The discrete form of the gradient operator can be expressed as:

(67)

Substituting (66)-(67) into (65) yields:

(68)

where

(69)

Equation (68) can be rewritten as:

(70)

where in each element:

Be = rN;(SoTo+StT()NedO,Je,

De = rN;SoT1Ne dO.Je,

(71)

(72)

(73)

Numerical results
We proceed to investigate two general cases:

(i) free edge effects in the laminate;
(ii) the interlaminar crack between dissimilar anisotropic laminates in a composite.

Two different composite materials are used for the numerical calculations.
Composite A is a typical high modulus graphite/epoxy; the material constants were

given in Section 2.
Composite B: (T300/5208 graphite/epoxy)

In the above, E; are the Young's moduli, Gij the shear moduli, and V;j the Poisson's
ratios. The C matrix [see eqn (51)] is obtained by using the relations derived by Pipes and
Pagano (1970).

Free edge problem
For the commonly used [±IX] angle-ply composite (Fig. 1), the order of the stress

singularity is a function of the fiber orientation IX. Finite element results of AI for each of
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Table 6. Eigenvalues for free-edge stresses associated with [±IX] fiber orientation composites (40 elements)

15 30 45 60 75

A, (Comp.A)
A, (Comp. B)

-0.001994
-0.002574

-0.011592
-0.022339

-0.025403
-0.033142

-0.020183
-0.029928

-0.003830
-0.005127

the [±IX] fiber composites are summarized in Table 6 and shown in Fig. 20 and Fig. 21. In
the case of composite A, the strongest stress singularity, which is equal to -0.027334,
occurs in a composite laminate having [± 53 degree] fiber orientation. For the [±45]
composite, the strength of stress singularity is - 0.025403, which agrees with the value of
-0.0274 obtained by spectral overlay finite element method and -0.02557 by Wang and
Choi (1982).

In the case of free-edge stress associated with the [90 degree/IX] fiber orientation in
composite A, Fig. 22 shows that the strength of the stress singularity at point A is not equal
to that at point B because the configuration is not symmetric about z axis.

Interlaminar crack problems
The finite element approach presented in this section can be easily extended to the

interlaminar crack problem between dissimilar anisotropic materials.
In the previous section we have shown that the dominant term in the interface crack

between two isotropic materials is related to the two complex and conjugate eigenvalues Al
and ,1,2 with real parts equal to -0.5. In the case of an interlaminar crack between angle­
ply composites, things become more complicated. The strength of the stress singularity is
related to the first three eigenvalues A.I' ,1,2 and A3' where ,1,1 is a real number. The numerical
results (Tables 7 and 8) show ,1,1 close to -0.5, and A2 and ,1,3 are complex and conjugate

z

-a
a
a y

-a

0.03

«
I

0.02

0.01

10080604020
0.00 otH_r::=..,...-_-,--......---,--.--.,....:::::OUt--...,

o

(l

Fig. 20. Strength of stress singularity in [lXI-IX] graphite-epoxy composites (40 elements).
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z

-ex
ex
ex

-ex

0.04

y

..<
I 0.02

O.OO..-III!:.,..----r-.......-r-__.---r-__--..,...........-..,
o w ~ 00 W ~

a

Fig. 21. Strength of stress singularity in [IX/-IX] T300/5208 graphite/epoxy (40 elements).

eigenvalues. The imaginary parts of A2 and A3 are very small in general, and decrease as ex
changes in either direction. In the limited cases ex = 0 and ex = n12, the imaginary parts of
A2 and A3 vanish since the two materials become identical with a single phase.

4. CONCLUSION

At the present time, experimental agreement has not been established between the
strength of the singularity and failure. However, effective methods for determining the
strength of the singularity are clearly needed. In this paper, two finite element methods for
determining the strength of the singularity have been presented for the interface in both
isotropic and anisotropic materials. The methods are based on an eigenfunction expansion
method and involve the solutions of quadratic eigenvalue problems. The results agree very

Table 7. The first three eigenvalues for interlaminar crack
problems associated with [±a] graphite-epoxy composites

(40 elements)

IX A, ).2 and).3

15 -0.502955 -0.504541 ± iO.004912
30 -0.503223 -0.505145±iO.023907
45 -0.503605 -0.507170 ± iO.034032
60 -0.503867 -0.509929±iO.028159
75 -0.503669 -0.511536 ± iO.013336
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z

B
a A90
90
a

y

0.04

'1 0.02

- Strength of singularity at A
--+- strength of singularity at B

100go604020
0.00 +----..,....--.....--r------r-~~~---__,

o
a

Fig. 22. Strength of stress singularity in [Cl/901 graphite/epoxy composites (40 elements).

well with previous solutions and some new solutions are given. In addition, it has been
shown that if a method with high resolution, such as the spectral overlay is used, good
estimates of the strength of the singularity can be obtained by a least-square fit.

In the case of an interface at a free edge, the singularity is quite weak with an exponent
of order 0.03. The new results obtained here show that the strength of the singularity
decreases monotonically in a [ex/90°] interface as ex tends to 90°; at 45° the strength is half
of that at zero. In [-ex/ex] plies, the strength is maximum near 45° and is approximately
parabolic, with values ofless than 0.01 for ex < 25°.

The eigenvalue methods correctly reproduce that for an interface crack the eigenvalues
are complex, indicating oscillatory stresses. New results are obtained for an interlaminar
crack between [-ex/ex] composites. The results show that the real part of the singularity is
almost exactly -0.5 (within 1%).

Table 8. The first three eigenvalues for interlaminar crack
problems associated with [±Cl] T300/5208 graphite-epoxy

composites (40 elements)

Cl AI A2 and A3

15 -0.502974 - 0.504635 ± iO.OO8496
30 -0.503262 -0.505572 ± iO.027292
45 -0.503806 -0.508176± iO.034121
60 -0.504283 -0.511358 ± iO.025442
75 -0.503799 -0.513247 ± iO.06481O

SAS 31:5-1
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Whereas standard finite element and finite difference methods give ambiguous stress
results at the interfaces of the composite laminates because of the presence of weak stress
singularities, the spectral overlay can provide solutions that agree closely with the eigenvalue
methods. However, in order to achieve these solutions, considerable resolution must be
introduced in a small area near the free edge and interface.

While the eigenvalue methods cannot be used to ascertain the coefficient of the singular
terms, once the strength of the singularity is known, these singular terms can be included
in the pertinent elements to obtain a complete solution. This, however, is quite involved
and the results obtained by the spectral overlay show that both the coefficient and the
strength of the singularity can effectively be obtained by this method.

Acknowledgement-The support of NASA Langley to Northwestern University is gratefully acknowledged.
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APPENDIX

For the quartic eigenvalue problem;

().4A+).3B+).2C+)'D+E)x = O. (A.l)

If A is nonsingular it is possible to transform the above quartic eigenvalue problem to the form;

(-).3A- 1B-).2A- 1C-AA- 1D-A- 1E)x = ).4X, (A.2)

or;

-A-1Bu-A-1Cz-A-1Dy-A-1Ex = AU,

y=).x,

z = ).y,

U = Az.

Equations (A.3)-(A6) can be specified in a standard eigenvalue form as;

n" -r -r -yEHl{}

(A.3)

(A4)

(A.5)

(A.6)

(A7)

Furthermore, the roles of A and E may be reversed if Jl = I/A is substituted for).. If both A and E are singular,
an alternative reduction can be used by transforming the equations to the parameter Jl, where;

8+),
Jl = 8-..1..'

in this case). = 8(Jl-l)/(Jl+ I), giving:

(Jl4A*+ Jl3B* + Jl 2C* + JlD* + E*)x = 0,

where

A* = 84A+83B+82C+8D+E,

B* = -484A-283B+28D+4E,

C* = 684A-282C+6E,

D* = -484A+283B-28D+4E,

E* = 84A-83B+82C-8D+E.

(A8)

(A.9)

(A. to)

(All)

(A.12)

(A. B)
(A. 14)

The parameter 8 may be used to regulate the relative magnitudes of the contributions of A, B, C, D and E to A*.
The suitable 8 will be chosen so that A* is nonsingular.

For the quadratic eigenvalue problem [see eqn (31)] :

().2A+).B+C)x = 0, (A.15)

if A is nonsingular, it can be converted to the standard form:

if both A and C are singular, let Jl = (8+),)/(8-),), and equation A.15 becomes:

(Jl2A*+ JlB* + C*)x = 0,

where

A* = 82A+8B+C; B* = -282A+2C; C* = 82A-8B+C.

(A. 16)

(A.17)

(A. 18)


